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Motivation



“data is biased” is not enough
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Google images query: ‘CEQ”
[Kay, et al. 2015; Megan Garcia 2017; Feng, Shah 2022]

Query Result W% Real W%
CE0 11% 22%
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“data is biased” is not enough
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The ML pipeline is composed of many elements that can contribute to bias generation/amplification [Suresh, Guttag 2021].

[Sagawa, et al. 2020] : over-parameterisation increases bias,

[SSM, et al. 2022; Jain, et al. 2024; Subramonian, et al. 2025] : data structure,
[Bell,et al. 2023; Bell, et al. 2024] : architecture complexity

[lofinova, et al. 2023] : pruning can increase bias,

[Ganesh, et al. 2023] : batch randomness and curricula,

[Francazi, et al. 2023a;b] : architecture complexity/activation function.
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Understanding bias as a physicist



A modelling approach

l' 'l Ili Hughes 2007; 2019 made a meta analysis of publications in
pharmacology journals
INVISIBLE
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A modelling approach
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Gaussian Mixture model

0.  Generate centroids

V; NN(O, 1)

1. Assign group

c~pdlc—1)+(1—p)o(c+1)

2. Generate sample

2z~ N(0,1)

v
r=Cc—— + 2

VN

(Single Index) Teacher-Student model

0.  Generate teacher
Wr e SN_l(N)
1. Generate sample

x ~N(0,1)

2. Generate label

- We
Yy = sign <x L

VN
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Rmk. In high-dimension the key observables can
be characterised by a few sufficient statistics

o
A modelling approach o-lwar  wolow
qu%WT‘-W; Ri=%W$-W
[SSM, et al. 2022] Teacher-Mixture model
N 0.  Generate teachers and centroids
] 5%‘ Wr € SNTUN) v ~ N(0,1)
feature #1 d .
;d_ feature #2 | L] >y L Assign group
N : ] W;
T <. ¢~ pole—=1)+ (1 —p)o(c+1)
p “a nik
2. Generate sample
L | v
r=c——=+z 2~ N(0,1
W VN (0.1)
............................................ > I — 2. Generate label
=si n(x'W%+b)
y _ g \/N c
4, Train 5. Do Replicas

AW 9s(6:; \) 9s(6: ) 9s(0; \)

LW.b) =) (W, ba' y')+ 2 Q=-2——" M=—"" Rf=="_

(W, b) ; ( y") 5 250 oN 0 R*
with s(©;\) the free entropy of the model.
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Results at equilibrium (brief summary)

In [SSM, et al. 2022] we showed: ar*1 9=
2.0 0.4
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The dynamics of bias



Bias evolution and mitigation strategies

A typical learning curve:
(a) training set accuracy

—-
o
o

@
o

e ...nowever, is this
Ee assumption correct?

50 100 150 200
Training Epoch

[Ye et al. 2021]
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o

1.0
Let’s revisit the experiment by Bell & Sagun 2022: wa
e a2-layer NN trained online on CIFAR10 with MSE, 091 2"
e divide the dataset in two populations and assign labels +1 and -1: g el
o group 1: ['deer', bird' ‘frog’, horse'] g 08 E >
o group 2: [cat', airplane’, ‘automobile’, ‘truck’] - Z:Z ]
e  Put the dataset back together with a mixture 90%-10% of group 1 and group 2. | ‘ | ' ‘ '
10! 103 10° 10! 103 10°
Epoch Epoch

Stefano Sarao Mannelli The dynamics of bias in SGD training




A modelling approach for 0SGD Q=W MW

1 1
QT:NWCIT'WIT Ri:—W%-W

[SSM, et al. 2022]

[Saad & Solla 1995; Biehl & Schwarze 1995] MF analysis of online SGD:
- o _
Wik +1] = Wn| — —=o' (W)(a(W) —y*)z*

H _ W=t
with M\ = v
Extended and made rigorous by [Goldt et al. 2019] and further generalised by [Veiga et al. 2022; Arnaboldi et al.
2023; Ben Arous, Gheissari, Jagannath 2024; Collins-Woodfin, Paquette, Paquette, Seroussi 2024]...
In our case we will focus on the perceptron model.

In the high-d limit, the OPs evolve following a set of deterministic ODEs, e.g.

) = B [N (0(N) — sign(A)N] = —nBaxe [(A — sign(A*))A"

dt
assume linear system
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1 1

Analytical solution of the dynamics AR

[SSM, et al. 2022]

Focus on a linear classifier, the dynamics of the order parameters follow the ODEs below

d

d—cf =6+ crM + csM? + coy Ry +cog_ R+ ¢10Q
dM

W =+ CQM

dR_

dR

—dt+ =34 +Ca M+ 5 Ry

with a series of coefficients c.

Stefano Sarao Mannelli The dynamics of bias in SGD training
T



1 1

Analytical solution of the dynamics AR

[SSM, et al. 2022]

Focus on a linear classifier, the dynamics of the order parameters admit explicit solution!

M(t) — Moe_'rl(’lH-AmiI)t + MOO(I o 6_7](v+Amiz)t),
Rj:(t) = Rg:e—nAmnt + Rio(l _ e_nAmimt) g ki{;(e_nAmizt _ 6—77('U+Amm)t)’
Q(t) — Qoe—n(2Amix_nA2miz)t 8. Qoo(l o e—ﬂ(ZAm”—nA"’m”)t)
KT kz(e—t(2AmiI—nA2miI)n o e—tAmi:'r]) + k3(e—t(2Amix_nA2miz)n - e_t(”‘i‘AmiI)’I)

e mizr __ 2maz il miz
L k4(6 t(2A nA n e t(2v+2A )17)’

with  A™X=pA | 4 (1—p)A_  AMX=pA2 4+ (1 p)A?

They characterise three timescales

o = 1/n(o + A = 1)(nA™) g = 1/[(2A7 — yati)
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Common groups
(low error)
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T *T,, : spurious correlations case

Atypical groups
(high error)

y: I.)lon(l hair 4% ¥ dark hair
a: female a: male

‘Waterbirds
4,795

training
examples

41%

y: blond hair 1
a: male “

y: waterbird y: landbird
a: water 22%  a: land
background background

[Sagawa et al. 2020]
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73%

y: waterbird
a: land 1%
background

generalization error

TR = 1/(nA™7)

= 1/[n(v+ A™7)]

cosine similarity

o o o L

N U N o

w ) I IS
. 1 f )

Spurious features are faster to learn but
asymptotically disappear
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T *T, : faimess case (centered)

generalization error

"100  10®  10°
epoch

TR=1/(A™) 19 =1/[n(2A™"

What's going on?

; 2 AHY
. 2 AT A L& e
t=0 o + TAL 7

pe = J2PVBA T - p)VA-
s T Amiz

Initial dynamics

dt
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Emergence of a
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T *T, : faimess case (centered)

S 1.0
V)
_§ 0.8 - Emergence of a
8 bias crossing
go6y—. phenomenon
‘02104 — T - T
10° 103 10°
epoch
Th=1/(A™) g = 1/[n2A™" —nAT)]
What's going on?
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Asymptotic dynamics
e \/épmwi(l ~ DVA-
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T *T, : faimess case (centered)

S 1.0
c
S 0.81 Emergence of a A, =10
N bias crossing 0.01 .
0671 —. phenomenon . asymptotic +
o — transient +
5 0.4 : : 0.1 asymptotic +
10° 103 ) 106 traynsfént -
epoc
<| 1.0 divergent
Tr = 1/(nA™) T = 1/[n(2A™" — nA?m)] 10.0 asymptotic -
transient +
S goi ? asymptotic -
What's going on? 100.0 : | transient -
Initial dynamics — Saliency dominates 0.0 0.5 1.0
P

Asymptotic dynamics — Relative representation enters into play
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Ty TRy fairness case (general)

= 1/[n(v + A™7)]
TR = 1/(nA™?)
7o = 1/[n(2A™" — nAP™T)]

generalization error

100 103 106
epoch

Three phases
1. Green phase is driven by spurious correlation where the positive cluster is advantaged since it has greater representation and class imbalance.
2. Red phase is driven by greater variance where the negative cluster is learnt faster.

3. Orange phase where the student starts aligning with the positive taking into account relative representation.
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Testing the results in the wild-ish



Numerical Experiments on Synthetic Data

Deeper...
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where the student

Numerical EXperimentS On CIFAR starts aligning with the positive taking

into account relative representation.

Let’s revisit our starting experiment [Bell & Sagun 2022]:
e  a2-layer NN trained online on CIFAR10 with MSE,
e  divide the dataset in two populations and assign labels +1 and -1:
o group 1: ['deer’, bird’, frog', horse’]
o group 2: [cat', airplane’, ‘automobile’, ‘truck’]
e  Put the dataset back together with a mixture of p and (1-p) of group 1 and group 2 respectively.

1.0
1.0 -
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0.8
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g S 065 0.6
2 g o
n 0.8 0.60
ﬁ "a"'; 0.4
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0.2
0.7 1 0.50 -
% ¥ T T J T 0-0
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is driven by greater

Numerical EXperimentS On MNIST variance where the negative cluster is

learnt faster.
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Numerical Experiments on CelebA et et 01

1.0 .
> > > 0.7
8 0.81 8 @
5 3 S 0.6
[} v v
v O o
< < <054
0.6 ‘
0.4
o 001 o 0.02 "
£ 0.00- 2 0.00 1 g
(< g [ (D
a G -0.02 a
>, —0.01 - = > 0.00 1
o) v v
g £ —0.04 g
2 —0.02 1 S g —0.02 1
< < -0.06 4
10! 103 10° 101 103 10° 10! 10° 10°
Epoch Epoch Epoch
(a) (Eye glass, Bags under eyes) (b) (Bangs, Blurry) (¢) (Young, Blond Hair)
target group
Stefano Sarao Mannelli The dynamics of bias in SGD training



Conclusions



Conclusions

Y Several aspects of the ML pipeline can potentially generate and amplify bias.
% Many of these are still underexplored!
% The assumptions behind our methods may fail.

% We focused on two aspects:
% The statistical properties of the data,
% The SGD learning dynamics.

Y Our results show:
% The dynamics of bias can be non-monotonic with consequences on learning heuristics,
% We can characterise the features that attract the dynamics at different stages of learning.

Several open questions

Y What is the effect of memorisation?

Y What happens in multiclass settings when classes share similar structure?
¥ How prior knowledge (pre-training/continual learning) change this picture?
*
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Standard Configuration with Adam with Weight Decay
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Figure 10: Synthetic Data Simulation with alternate Training Protocols We observe the ‘double-
crossing’ phenomena in not only the loss curves, but also the error curves for the positive sub-
population (blue) and the negative sub-population (red) (left). The shaded areas quantify the standard
deviation obtained across 10 seeds. We observe similar behavior when using Adam (middle) and
weight decay (right). The data distribution parameters are d = 100,v = 4,p = 0.7,A; =

0.1,A_ =1,Ty =0.9,7=0.01,ay =0.471,a_ = —0.188
Learning Rate: 0.1 Learning Rate: 0.03 Learning Rate: 0.003 Learning Rate: 0.001
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Figure 13: Ablations across Learning Rates Larger learning rates can lead to instability (lef). If
training is stable however, we observe the ‘crossing’ phenomena as usual, just at different time scales
due to different speeds of training.
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